
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

 82

VOTING-BASED MOTION ESTIMATION

Alexandru ILINU1

Cristian AVATAVULUI2
Giorgiana Violeta VLĂSCEANU3

Costin-Anton BOIANGIU4

Abstract: Motion estimation is an essential topic in computer vision, having a
large number of applications, such as tracking and video compression, to name a
few. This paper presents a voting-based motion estimation algorithm that combines
two categories of methods, namely dense methods (optical flow) and sparse
methods (block-matching). The obtained results proved that the proposed approach
is fast, robust and reliable, thus being suitable for integration in unsupervised
video processing systems.

Keywords: motion estimation, optical flow, block matching, motion vectors, voting
system, voting methods

1. Introduction

The main idea of motion estimation is (given a sequence of images, usually a
video) to find the motion, namely what moved in the sequence and how or how
much it moved (the direction and magnitude) as we step through the images in the
sequence [1]. Usually, we want to find the motion between every two consecutive
frames at the same point in the image space. We may be interested in finding the
motion of some regions of the image, the motion in some specific sampling points,
or the motion of all pixels of the image. Thus, the output of motion estimation
algorithms is a 2D vector field. The vectors are defined at some points in the image
space, or at every pixel, which represents an estimation of the motion at that
particular point or in a neighborhood of that point). The vector field is calculated at
each frame based on the difference with the previous frame.

1.1. Previous work

In the past years, the domain of motion estimation had evolved considerably [1][2].
There are two major categories of methods for motion estimation mentioned in the
literature: direct methods and indirect methods [3][4].

1 Engineer, University Politehnica of Bucharest, 060042 Bucharest, Romania,
alexandru.ilinu@stud.acs.upb.ro
2 PhD Student., University Politehnica of Bucharest, 060042 Bucharest, Romania,
cristianavatavului@gmail.com
3 Teaching assistant, PhD Student, Eng., University Politehnica of Bucharest, 060042 Bucharest,
Romania, giorgiana.vlasceanu@cs.pub.ro
4 Professor, PhD Eng., University Politehnica of Bucharest, 060042 Bucharest, Romania,
costin.boiangiu@cs.pub.ro

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

 83

In the first category, there are the methods presented in the scientific world:

 Dense/direct methods – estimate motion in every pixel based on the
temporal and spatial variation of the intensity at that point ([15], [18],
[19])

 Block-matching methods – divide the image space into blocks of equal
size and estimate the motion for each block based on the correlation of
the intensities of the pixels in that block and the ones in the other frame.
They can further be generalized to so-called “region-matching” methods
that use regions of arbitrary shapes instead of rectangular blocks
[20][7][8].

 Phase correlation – compute an estimate of the global motion between
two frames based on their Fourier transform. In some research papers are
mentioned as frequency-domain methods [16].

 Optical Flow – compute a motion vector between two consecutive
frames [12].

The second category is the indirect methods that have at the base the features
(corner detection):

 Feature-based methods – these methods find feature points and track
them across multiple images; they estimate the motion of only the feature
points based on the locations they are found in the images [5].

1.2. Problem motivation

Dense methods are based on a Taylor series approximation that only holds for
small displacements of the same object point in the two frames. Thus, they are well
suited for videos with a “small” amount of motion. On the other hand, block-
matching methods can detect more significant motions depending on the size of the
search region parameter; however, they are more computationally intensive.

We can obtain a sparse motion estimation method from a dense method by
skipping pixels, or equivalently, by sampling the pixels regularly in the image
space, at a given interval. Similarly, for a sparse method that computes the motion
vector for a specific block, we can shift the block by any number of pixels and
apply the same procedure to estimate the motion vector for any pixel in the image
space (or decrease the block size up to a few pixels) – and obtain a dense method
from a sparse one.

Thus, we can tune the “sparsity” of the methods and combine the advantages of the
two methods into one voting-based algorithm.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

84

2. Proposed Method

The method proposed here calculates the motion vector fields at the same “sparsity
level” using the two methods described above, and then combines their results into
a single output.

Firstly, the two methods will be described in detail, and then the final voting-based
method will be presented.

For simplicity, the experiments consider only gray-scale image sequences.

2.1. Optical flow

This method [13][14] considers a sequence of images represented by a function
𝐼 = 𝐼(𝑥, 𝑦, 𝑡), where 𝑥 and 𝑦 are the spatial coordinates (the locations of the pixels)
and 𝑡 represents time (or the frame number). The final goal is to estimate the
motion vector [𝑢, 𝑣] for every sampling point (𝑥, 𝑦) in the image space and
between every two consecutive frames (𝑡 and 𝑡 + 1).

It was considered a specific point (the blue point in Figure 1) at coordinates (𝑥, 𝑦)
in the frame 𝑡, moving along the motion vector [𝑢, 𝑣], so in the frame 𝑡 + 1, the
blue point will be at the location (𝑥 + 𝑢, 𝑦 + 𝑣). A reasonable assumption is that
the point will appear in the same color (or the same intensity value) in the frame
𝑡 + 1 at the new location, so this gives the brightness constancy constraint
(equation (1)).

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) (1)

Figure 1 – Optical Flow Example

Now, if the motion vector [𝑢, 𝑣] is sufficiently small, the following Taylor series
expansion holds:

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

 85

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) ≃ 𝐼(𝑥, 𝑦, 𝑡) +

𝜕𝐼

𝜕𝑥
⋅ 𝑢 +

𝜕𝐼

𝜕𝑦
⋅ 𝑣 +

𝜕𝐼

𝜕𝑡
 (2)

From (1) and (2) it can be obtained:

 𝐼௫ ⋅ 𝑢 + 𝐼௬ ⋅ 𝑣 + 𝐼௧ = 0 (3)

In (2) and (3),
డூ

డ௫
,

డூ

డ௬
,

డூ

డ௧
 or, 𝐼௫, 𝐼௬, 𝐼௧ represent, respectively, the estimates of the

derivatives of the image function 𝐼 (concerning 𝑥, 𝑦, and 𝑡).

The motion vector at (𝑥, 𝑦) can be computed by solving equation (3) for 𝑢 and 𝑣.
The equation has two unknowns (underconstrained linear system of equations). A
unique solution, in this case, is not available, and there are infinitely many. To
overcome this, there are some approaches:

 Horn & Schunck [19] – impose a smoothness constraint on the motion
vector field across the image; together with (II.3) this becomes a
minimization problem: we need to find the motion vector field
𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦) such that the following expression is minimized:

ඵ൫𝐼௫𝑢 + 𝐼௬𝑣 + 𝐼௧൯

ଶ
+ 𝜆൫𝑢௫

ଶ + 𝑢௬
ଶ + 𝑣௫

ଶ + 𝑣௬
ଶ൯𝑑𝑥𝑑𝑦 (4)

where 𝑢௫, 𝑢௬, 𝑣௫, 𝑣௬ represent the derivatives of the motion components and
𝜆 is a tunable parameter.

 Lucas & Kanade [14] – they assume a local smoothness of the motion
vector field in the neighborhood of point (𝑥, 𝑦); more precisely, the
assumption is that the motion vector [𝑢, 𝑣] is the same for every pixel in
a small window around that point; the size of this window is a parameter
that can be modified. This is the method that is used in the presented
voting-based algorithm.

By writing (3) for every pixel 𝑖 in the window, the result is an overconstrained
system of 𝑁 equations (the number of pixels in the window) with only 2 unknowns,
𝑢 and 𝑣:

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

86

⎣
⎢
⎢
⎡
𝐼௫భ

𝐼௬భ

𝐼௫మ
𝐼௬మ

⋮ ⋮
𝐼௫ಿ

𝐼௬ಿ⎦
⎥
⎥
⎤

ᇣᇧᇧᇤᇧᇧᇥ

ቂ
𝑢
𝑣

ቃ = −

⎣
⎢
⎢
⎡
𝐼௧భ

𝐼௧మ

⋮
𝐼௧ಿ⎦

⎥
⎥
⎤

ᇣᇤᇥ

 (5)

where the subscript represents the pixel number. By making the above notations it
results:

𝐴 ⋅ ቂ

𝑢
𝑣

ቃ = 𝑏 (6)

The above is an overconstrained system of 𝑁 equations and 2 unknowns and in
general, has no solution. However, it can find the “closest solution”, the one that
minimizes the error:

𝐸 = ቛ𝐴 ቂ

𝑢
𝑣

ቃ − 𝑏ቛ
ଶ
 (7)

by solving the normal equation:

(𝐴்𝐴) ቂ

𝑢
𝑣

ቃ = 𝐴்𝑏 (8)

If 𝐴்𝐴 is invertible, we have:

ቂ
𝑢
𝑣

ቃ = (𝐴்𝐴)ିଵ𝐴்𝑏 (9)

which gives the following final expressions:

⎩
⎪
⎨

⎪
⎧𝑢 =

∑ 𝐼௬𝐼௧ ⋅ ∑ 𝐼௫𝐼௬ − ∑ 𝐼௫𝐼௧ ⋅ ∑ 𝐼௬
ଶ

∑ 𝐼௫
ଶ ⋅ ∑ 𝐼௬

ଶ − ൫∑ 𝐼௫𝐼௬൯
ଶ

𝑣 =
∑ 𝐼௫𝐼௧ ⋅ ∑ 𝐼௫𝐼௬ − ∑ 𝐼௬𝐼௧ ⋅ ∑ 𝐼௫

ଶ

∑ 𝐼௫
ଶ ⋅ ∑ 𝐼௬

ଶ − ൫∑ 𝐼௫𝐼௬൯
ଶ

 (10)

where the summations are performed over the whole window around the point
(𝑥, 𝑦).

If the point (𝑥, 𝑦) corresponds to a flat region, then the motion vector cannot be
computed, as the matrix

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

 87

𝑀 = 𝐴்𝐴 = ቈ
𝐼௫

ଶ(𝑥, 𝑦) 𝐼௫(𝑥, 𝑦)𝐼௬(𝑥, 𝑦)

𝐼௫(𝑥, 𝑦)𝐼௬(𝑥, 𝑦) 𝐼௬
ଶ(𝑥, 𝑦)

 (11)

(which is the second-moment matrix of the Harris corner detector) is not invertible
(or close to singular).

It can be seen from (10) that the complexity of calculating the value of one motion
vector for 1 frame is 𝑂(𝑊ଶ), where 𝑊 is the size of the window over which the
summations are done.

To combine this technique with the following one, a consideration was made. A
rectangular grid is considered over the image space and computes the motion
vector at the center of each block/grid cell.

2.2. Block matching

Figure 2 – From left to right: a. reference frame; b. current frame; c. (dis)similarity

function. Where: red – current block, orange – sliding window, purple –
search region, green – minimum of the dissimilarity function

The image is divided at time 𝑡 (current frame) into a rectangular grid of blocks, as
in Figure 2. Then, for every block, the aim is to find out the location in image space
where that block was in the previous frame 𝑡 − 1 (reference frame) – that is, the
location that best matches the current block [11]. To do so, it was considered a
sliding window [10] (having the same size as the block) that swipes the reference
frame and for each location in the reference frame, it was computed similar the
region in the sliding window is to the current block. For that, it was used a
(dis)similarity function such as the mean squared error (MSE).

So, for a block at coordinates (𝑥, 𝑦), and a particular position of the sliding
window, displaced by (𝑑௫ , 𝑑௬) from (𝑥, 𝑦), the dissimilarity/cost function of the
two regions is:

𝜖൫𝑑௫ , 𝑑௬൯ = ቀ𝐼௧(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝐼௧ିଵ൫𝑥 + 𝑑௫ + 𝑖, 𝑦 + 𝑑௬ + 𝑗൯ቁ

ଶ

,

 (12)

where the summation is performed on a block-sized region around point (𝑥, 𝑦)
show in Figure 2. As the difference between the intensities of the two regions at

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

88

corresponding locations is bigger, the cost function is bigger. So, the challenge is to
find the displacement ൫𝑑௫ , 𝑑௬൯ that minimizes the cost function [9]. To do that, the
motion vector (𝑢, 𝑣) is chosen to be:

(𝑢, 𝑣) = −𝑎𝑟𝑔𝑚𝑖𝑛(ௗೣ,ௗ) 𝜖൫𝑑௫ , 𝑑௬൯ (13)

Alternatively, it can be used a similarity function such as cross-correlation and try
to maximize:

𝜖൫𝑑௫ , 𝑑௬൯ = 𝐼௧(𝑥 + 𝑖, 𝑦 + 𝑗)𝐼௧ିଵ(𝑥 + 𝑑௫ + 𝑖, 𝑦 + 𝑑௬ + 𝑗)

,

 (14)

Figure 3 - The motion compensation vector 𝐴𝐵ሬሬሬሬሬ⃗

If it is denoted by 𝐴 the center of the current block and 𝐵 the location that gives the
minimum cost, it can be seen that the point has moved from 𝐵 to 𝐴, so the motion
vector at point 𝐴 is 𝐵𝐴ሬሬሬሬሬ⃗ (Figure 3):

ቂ
𝑢
𝑣

ቃ = 𝐵𝐴ሬሬሬሬሬ⃗ = ቂ
𝑥 − 𝑥

𝑦 − 𝑦
ቃ (15)

If it is known that the motion is less than a specific value 𝑢௫ pixels on 𝑥
direction, 𝑑௫ can be restricted to vary in the interval [−𝑢௫, 𝑢௫] (similarly for
𝑦 direction; thus, the restriction is the search for a block to a search region around
(𝑥, 𝑦) – see Figure 2).

The complexity of the method is 𝑂(𝑆ଶ𝐵ଶ) for 1 motion vector and for 1 single
frame, where 𝑆 is the size of the search region and 𝐵 is the block size.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

 89

2.3. The Voting method

This section presents the output of the two previous methods with (𝑢ଵ, 𝑣ଵ) and
(𝑢ଶ, 𝑣ଶ). Then the voting method considers the output of the voting method as the
arithmetic means of the two:

(𝑢௩௧ଵ, 𝑣௩௧ଵ) = ൬

𝑢ଵ + 𝑢ଶ

2
,
𝑣ଵ + 𝑣ଶ

2
൰ (16)

Another possibility is to take the mean of both magnitude and angle, such as in
Figure 4.

Figure 4 – The two cases for the voting method proposed

3. Implementation details

The motion estimation algorithms presented above were implemented in
MATLAB.

The application opens a video and then loops through every frame, generates, and
displays a motion field between the current and previous frame. In this case, this
application was considered a rectangular grid over the image space and perform the
motion estimation in the center of every grid cell.

For the first method - optical flow - the spatial derivatives of the image 𝐼௫, 𝐼௬ were
computed using a Sobel filter and 𝐼௧ as the difference between the current and
previous frame. The final motion vector components using was computed using
equation (10).

As for the second method, for each location was looping through the search region,
and compute the cost function using equation (12). The application keeps track of
the position that gives the minimum value for the cost function and then calculates
the motion vector by using equation (15).

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

90

4. Results

The results of the voting approach are displayed in Figure 5.

Figure 5 – Proposed Voting Method. From left to right: a. original image, b. optical
flow, c. block matching, d. voting approach 1 e. voting approach 2

The methods presented above are very computationally intensive and only worked
for very small size input images. The optical flow method often gives highly
inaccurate results, especially at the boundary of objects, where the assumption of
constant motion field is violated. The optical flow method is unstable in flat
regions (the denominator in (10) goes to zero since the matrix in equation (11) is
singular). Moreover, this method is susceptible to noise and only works for tiny
motions (up to a few pixels). The Block-matching method is more robust than the
previous, but unfortunately, the complexity is higher. However, many
optimizations can be added to improve the efficiency of the method, such as 2D
logarithmic search, pixel subsampling, pixel projection etc. [4]

Some performance measurements are given below in Table 1 and Table 2.

 Optical flow Block matching

Parameters: window size = 2 Search region: 16

88 × 60 × 2 frames 9.46 s 9.62

352× 240 × 2 frames 14.09 14.63

Table 1 – Performance measurements with Block size 8

Block matching Optical flow

Search region Time Window size Time

32 16.65 2 14.15

16 14.63 3 13.47

8 13.78 1 13.38

2 15.06

Table 2 – Performance measurements in time for block-matching and the optical
flow

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

 91

5. Conclusions

Although motion estimation is an essential topic in computer vision, most of the
algorithms are very computationally intensive, and there is still room for
improvement, especially for real-time applications. Every class of algorithms is
suitable for a specific problem, and one needs to consider the requirements of the
underlying application when choosing the appropriate method.

The presented motion detection approach will be used in the future in an
unsupervised system containing various voting-based modules [21-23], with the
explicit purpose of ensuring increased reliability and robustness, as well as better
confidence in the obtained results.

Acknowledgements

This work was supported by a grant of the Romanian Ministry of Research and
Innovation, CCCDI - UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-
0689 / „Lib2Life- Revitalizarea bibliotecilor și a patrimoniului cultural prin
tehnologii avansate” / "Revitalizing Libraries and Cultural Heritage through
Advanced Technologies", within PNCDI III.

References

[1] Bergen J.R., Anandan P., Hanna K.J., Hingorani R., Hierarchical model-
based motion estimation, In Sandini G. (eds) Computer Vision — ECCV'92.
ECCV 1992. Lecture Notes in Computer Science, vol 588. , 1992, Springer,
Berlin, Heidelberg, DOI:10.1007/3-540-55426-2_27

[2] Thomas B. Moeslund, Erik Granum, A Survey of Computer Vision-Based
Human Motion Capture, Computer Vision and Image Understanding, Volume
81, Issue 3, pp 231-268, DOI: 10.1006/cviu.2000.0897, 2010.

[3] Forsyth, David A., Ponce, Jean, Computer Vision: A Modern Approach,
Prentice-Hall Professional Technical Reference, 2002

[4] Claudette Cédras, Mubarak Shah, Motion-based recognition a survey, Image
and Vision Computing, Volume 13, Issue 2, pp. 129-155, DOI: 10.1016/0262-
8856(95)93154-K, 1995.

[5] Torr, P. H. S, Zisserman, A., Feature Based Methods for Structure and
Motion Estimation, in Vision Algorithms: Theory and Practice, Springer
Berlin Heidelberg, pp 278-294, 2000

[6] Rui Xu, David Taubman, Aous Thabit Naman, Motion Estimation Based on
Mutual Information and Adaptive Multi-scale Thresholding, in Image
Processing, IEEE Transactions, vol.25, no.3, pp.1095-1108, March 2016.

[7] G. de Haan, P. W. A. C. Biezen, H. Huijgen, O. A. Ojo, True-motion
estimation with 3-D recursive search block matching, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 3, no. 5, pp. 368-379, DOI:
10.1109/76.246088, Oct. 1993.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 14.1, May 2020

92

[8] Shan Zhu, Kai-Kuang Ma, A new diamond search algorithm for fast block-
matching motion estimation, IEEE Transactions on Image Processing, vol. 9,
no. 2, pp. 287-290, Feb. 2000, DOI: 10.1109/83.821744.

[9] Yao Nie and Kai-Kuang Ma, Adaptive rood pattern search for fast block-
matching motion estimation, IEEE Transactions on Image Processing, vol. 11,
no. 12, pp. 1442-1449, Dec. 2002, DOI: 10.1109/TIP.2002.806251.

[10] Jianhua Lu, M. L. Liou, A simple and efficient search algorithm for block-
matching motion estimation, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 7, no. 2, pp. 429-433, DOI: 10.1109/76.564122, April
1997.

[11] M. Brunig, W. Niehsen, Fast full-search block matching, IEEE Transactions
on Circuits and Systems for Video Technology, vol. 11, no. 2, pp. 241-247,
DOI: 10.1109/76.905989, Feb 2001.

[12] D. Sun, S. Roth, M. J. Black, Secrets of optical flow estimation and their
principles, IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, San Francisco, CA, 2010, pp. 2432-2439, DOI:
10.1109/CVPR.2010.5539939, 2010.

[13] L. Xu, J. Jia, Y. Matsushita, Motion Detail Preserving Optical Flow
Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 9, pp. 1744-1757, Sept. 2012, DOI: 10.1109/TPAMI.2011.236.

[14] Argyriou, V., Vlachos, T, A Study of Sub-pixel Motion Estimation using Phase
Correlation, In BMVC pp. 387-396, 2006

[15] A. French Optical Flow, Computerphile, 2019.
[16] M. Li, M. Biswas, S. Kumar, Truong Nguyen, DCT-based phase correlation

motion estimation, 2004 International Conference on Image Processing, 2004.
ICIP'04. Vol. 1. IEEE, 2004.

[17] Rui Xu, David Taubman, Aous Thabit Naman, Motion Estimation Based on
Mutual Information and Adaptive Multi-scale Thresholding, in Image
Processing, IEEE Transactions, vol.25, no.3, pp.1095-1108, March 2016.

[18] I. Essa A., Bobick Introduction to Computer Vision, udacity.com, 2015.
[19] M. Shah, Optical Flow, UCF Computer Vision Video Lectures, 2012.
[20] A. K. Katsaggelos, Fundamentals of Digital Image and Video Processing,

Northwestern University.
[21] Costin-Anton Boiangiu, Radu Ioanitescu, Razvan-Costin Dragomir, Voting-

Based OCR System, The Journal of Information Systems & Operations
Management, Vol. 10, No. 2, 2016, pp. 470-486.

[22] Costin-Anton Boiangiu, Mihai Simion, Vlad Lionte, Zaharescu Mihai –
Voting Based Image Binarization, The Journal of Information Systems &
Operations Management, Vol. 8, No. 2, 2014, pp. 343-351.

[23] Costin-Anton Boiangiu, Paul Boglis, Georgiana Simion, Radu Ioanitescu,
Voting-Based Layout Analysis, The Journal of Information Systems &
Operations Management, Vol. 8, No. 1, 2014, pp. 39-47.

